Data Science
- NLP key terms explained!
- Neptune.ai tips and tricks from image segmentation
- Stream-lit deployment of ML models
- AI searchable video library
- Streamlit interacive dashboards
- Deal with missing values
- How to start NLP project
- NLP Best Practices by Microsoft π
- ML Tech Debt
- Quick Deployment using Streamlit π₯
- Pytorch Official Tutorials
- Financial Machine Learning by Hudson and Thames
- David Robinson Live Coding
- Nice Coding Habits for DS
- 10 useful ML practices
- Model Evaluation Metrics
- Plotly Dashboard
- ML in Production β¬ Read all the guidelines
- Useful Python Site- RealPython π
- Basic Definitions of Models
- Handling Missing Values
- Project Euler
- Markdown Basics
- Git Basics
- Any Cheatsheet
- Deploy a ML Model using Flask on Heroku
- Web App using Flask
- Flask Heroku Github Integration
- Generic Flask API for sklearn Models
- Full Stack with Flask
- Flask mega-tutorial
- Deep Learning with Pytorch
- SQL Complete Tutorial
- SQL Notes for Professionals
- SQL Cheatsheet Slides
- Kaggle π
- Analytics Vidhya
- Numerical Intuition
- Google Machine Learning Crash Course
- Microsoft Forecasting Best Practices
- Solve NLP Problems
- Solve 90% NLP Problems like this
- NLTK Book β
- Stanford NLP Course π
- Spacy Cheatsheet
- NLP Cheatsheet
- Google Resource Library
- Practicing Data Science Case Studies
- Daily Data Science Curriculum Schedule π¦₯
- 4 Day Deep Learning Agenda π
- Machine Learning Cheatsheet π
- Polo Club of Data Science to visualize AI π
- Data Engineering Interview Questions
- Data Engineering Basic Skills
Python
General/Programming
Job Search
Cracking TripleByte
</details>
π Thatβs it for now! Will update if I find anything interesting!